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We develop an empirical test aimed at detecting nonergodicity from a single 
sample of a spin system. We show that the test is asymptotically correct, and we 
give explicit asymptotics for the error probability. The key tool consists in some 
new large-deviation estimates. 
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1. I N T R O D U C T I O N  

In this paper we analyze some aspects of the behavior of stochastic systems 
that are comprised of a large number of particles. The structure of the 
processes we consider becomes particularly rich in the limit of infinitely 
many particles (thermodynamic limit); some of these systems, for instance, 
may lose ergodicity after having performed the thermodynamic limit, i.e., 
the limit process may have more than one invariant measure. It is well 
known that the knowledge of the nonergodicity of a system in its infinite- 
particle limit may also help to understand relevant features of finite (but 
large) systems, such as metastability/L2) 

In general, if we are given an infinite-particle stochastic system, it is 
quite hard to establish its ergodic properties by knowing only the equation 
of the dynamics. For the spin systems we deal with in this paper there are 
conditions (indeed quite severe) that guarantee ergodicity, *s) but non- 
ergodicity can be proved only for a few special models. The approach we 
propose here consists in detecting nonergodicity via an empirical test. We 
assume we can observe a finite but large portion of the system for a large 
amount of time; we then test the unique realization we have observed, and 

~ Dipartimento di Matematica, Universit~i di Padova, 35100 Padova, Italy. 

1247 

0022-4715/94/0900-1247507.0010 ~ 1994 Plenum Publishing Corporation 



1248 Dai Pra 

decide whether the system is ergodic or not. We also get asymptotics for 
the probability that the test gives the wrong answer. 

Before giving a more accurate description of the model and of the test, 
we remark that both the test we present and the method to justify it are 
not new. They were introduced by Comets 13~ as a way to detect phase 
transitions in Gibbs fields with short-range interaction. Our contribution in 
this paper mainly consists in showing that Comets' ideas can be applied to 
the setting of continuous-time spin systems. We have to use the machinery 
of space-time large deviations developed in ref. 4 and 5, but this turns out 
not to be enough. Nonergodic systems are in fact characterized by the 
existence of "moderate" fluctuations, i.e., fluctuations whose probability is 
much higher than that of "genuine" large deviations. Giving bounds for 
these moderate fluctuations turns out to be harder than in the context of 
Gibbs fields, and is the main technical achievement of this work. 

We now give an informal description of the test for ergodicity, in the 
context of continuous-time spin systems. A spin-flip system in the infinite 
lattice is a Markov process with state space { - 1, 1 } z~, d >/1. If we denote 
by a =  {a(i): i~ Z a} an element of { - 1 ,  1} z~, the transition probability of 
the spin-flip system is characterized by 

Prob{a,+~,(i) = -a , ( i )  la,} = c(Oia,) At + o(zlt) 

for every ie  Z a, where 0i is the shift map in { - 1 ,  1 } za defined by O~a(j)= 
a( i+j ) .  The positive function c is called the flip rate. In this paper we 
assume c(.) to be a strictly positive and local function, i.e., depending only 
on the spins {a(i): i~A}  with A a finite subset of Z a. We notice that just 
by replacing Z a by the N-torus Za/NZ a we can define, in an analogous 
way, a finite spin system. Since we assume the flip rates to be strictly 
positive, it follows that the finite system is an ergodic Markov chain, while 
there are many examples of nonergodic spin-flip systems on { - 1 ,  1 } z~. 

Just to fix ideas, assume we are dealing with a system having two 
translation-invariant, ergodic equilibrium measures p+ and p _ ,  with 
EP+(a(O))>O and EP-(a(O))<O, and that the system converges to p+ 
(resp. p_  ) if initialized in a configuration a with lim,(l/n) ~'~ a(i) > 0 (resp. 
<0). Of course there are configurations for which this limit is not defined, 
but this is unimportant foL this informal discussion. Suppose we start from 
a configuration having all spins equal to + 1, and that we observe the 
evolution of the finite but large subsystem {a(i): Iil~<n}. Due to the 
random noise, there is a high probability that, within a time of order ~<n, 
there is a square S c { Iil ~< n}, of volume logan, such that the majority of 
spins in S is - 1 .  Since p_  is an "attractor" for those configurations with 
most of the spins negative, there are good chances that S keeps its 
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"negativity" lor a certain amount of time until it "realizes" it belongs to a 
larger system attracted by p + .  This amount of time is presumably at least 
of order log n, which is the time needed for the sites in the core of S to 
become sensibly influenced by the sites in S r (due to the locality of the 
interaction). To get a global picture we could say that, although the system 
converges to p +, there are small, but not too small, space-time islands with 
mostly negative spins. 

The discussion above suggests the following strategy. Suppose we 
observe the evolution of the sites in a square of volume n d from time t = 0 
to time t = n. Our observations are therefore relative to a space-time square 
of volume n d§ '. We now divide this square into smaller subsquares of side 
K log n, K >  0, to be properly chosen. We expect that there is at least one 
of these subsquares whose average spin is negative, while the average spin 
in most of the other squares is close to EP§ in other words, a 
sensible difference in the average spin of different space-time boxes is what 
allows us to recognize that the system is not ergodic. 

Surprisingly enough, this idea works. In general the extremal invariant 
measures may be more than two, and may not be distinguishable by the 
average spin, but by more complicated functionals. In all cases, however, 
nonergodic systems are characterized by the fact that the empirical 
averages of some functionals over space-time boxes of appropriate size is, 
with high probability, sensibly varying. This allows one to design a test 
to answer the following question: given e > 0 ,  are there two invariant 
measures for the system whose distance (e.g., in Prohorov metric) is greater 
that e? We prove that our test is asymptotically correct, i.e., the probability 
of giving the wrong answer goes to zero as the size of the observed space- 
time window increases to infinity, and we analyze the asymptotics of this 
probability. 

2. LARGE D E V I A T I O N S  

In this section we define the continuous-time processes we will be deal- 
ing with and summarize the large-deviations results proved in refs. 4 and 5. 
The Markov processes we are going to define take value on { - 1, 1 } z~, i.e., 
for any site i of the d-dimensional lattice Z d there is an associated spin 
value. The updating mechanism is specified by assigning a nonnegative 
function c(i, or), defined for i t  Z d, tre { -  1, 1} z~. The probability of chang- 
ing the sign of the spin at the site i during a time interval of length At, 
conditioned on the knowledge of the whole configuration at time t, is given 
by 

P { a ,  + a,(i) = - a , ( i )  I a,} = c(i, ~,)  At  + o ( 3 t )  
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Moreover,  spins at different sites are updated independently. In particular 
the probability of changing the spin at two different sites in the same 
interval It, t + At] is o(At). The functions {c(i, �9 ): i~ Z d} are usually called 
flip rates. 

The informal definition we have just given can be made rigorous as 
follows. First of all we provide { - 1, l } za with the product  of the discrete 
topology on X. The corresponding space of real continuous functions is 
denoted by cr _ 1, l} za); it becomes a Banach space with the usual sup- 
norm. We say that a function f :  { - 1, 1 } za _.. R is local if its dependence on 
a ~ { - 1 ,  1} z~ is only through { a(i): i ~ A }, where A is some finite subset of 
Z d. We denote by D the set of local functions. On D we can define the 
following operator:  

L ' f ( o ' ) =  ~" c(i, o - ) r f ( a i ) - - f ( o ) ]  
i E Z  d 

where 

ai(j) = ( - -  1 )'~".~ a(j) 

It is proved in ref. 8 that, under the assumption 

sup ~ sup It(i, ~I) - c(i, qJ)[ < dO 
i e Z  d j ~ Z  a q ~ { - - 1 , 1 }  zd 

(1) 

the closure of L c in c~({_ 1, 1} z~) generates a Markov semigroup. More- 
over, the corresponding Markov process is a Feller process. Notice that 
condition (1) essentially says that c(i, a) does not depend too much on the 
spin of sites that are far from i. We notice that ( 1 ) is satisfied when the flip 
rates are translation invariant [i.e., c(i,a)=c(O,O~a), where O~a(j)= 
a( i+j)]  and local [i.e., c(0, a) depends only on {a(i): i e A } ,  where A is a 
finite subset of zd]. Only these types of models will be considered in the 
rest of the paper. 

We now assume c: { -  1, 1} z ~  R § is a local and strictly positive 
function. As we have just seen, the operator  

uf(o)= ~ c(O,~r)[f(,~')-f(G)] 
i ~ Z  d 

p c  . is the generator of a Feller semigroup. We denote by { o.r ~ e { - 1, 1 } za} 
the corresponding family of conditional probabili ty measures. In parti- 
cular, for c -  1, we write Po.r in place of p l  Notice that Po.e is simply 0,~" 
the product  measure 1--I;~zaPo.e,l, Po.r being the Markov family of a 
Poisson-spin process with intensity one. For  obvious reasons the process 
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generated by L" with c = 1 is called a noninteracting spin system. L e t / 2  = 
D(R, { - 1, 1 } zs) be the space of the cadlag functions from R to { - 1, 1 } z~, 
provided with the Skorohod  topology;  f2 is the path  space for the process. 
On f2 we define the family of  space-time shift maps  {0,,,,: t ~ R, n �9 Z d} 
defined by 

(Ot,,,co)~ (i) = cos+ t(i + n) 

Definition 2.1. A probabil i ty  measure Q on I2 is said to be 
stat ionary if it is invariant  for all the maps  0,,,. 

We denote by Jgs(I2) the set of  s tat ionary measures,  provided with the 
weak topology. The Borel sets for this topology provide g2 with a structure 
of measurable  space. 

In what  follows we let V, = { i �9 zd: ij = 0, 1,..., n -- 1, Vj = l, 2 ..... d}. 
Given 09 ~/2  we define its n-periodic version 09" as follows: 

co~'(i)=co,(i) for O<~t<~n, i e  V, 

coT+h~(i+kn)=coT(i) for h � 9  k e Z  a 

where 

kn = (k in  ..... kan) 

For  F c  R x Z d we let ~ ' r  be the a-field of  subsets o f / 2  generated by the 
projections {n,,;: (t, i ) � 9  where n,,~(co)=co,(/). Sometimes we will use 
for ~ r  the notat ion a{w,(i): ( t , i ) e F } .  In the following definition we 
denote by #(12) the set of  bounded measurable  functions g2--, R. 

Def in i t ion  2.2.  Let co ~ g2 and ~b e #(f2) .  The n th empirical process 
R,,,o is the element of  J/s(g2) whose expectations are defined as follows: 

ER~ = ndl--~ ," ~v. f~ qb(O,,~co") ds (2) 

Notice that, in order  to make  R..~o stat ionary,  it is essential to use the 
nth-periodic version of  co in (2). We also remark that  the map  

f2 - ,  .a.(C2) 

CO I---+ R n ,  ~ 

is ~ 0 , . ]  • v-measurable .  In the rest of the paper  the a-field o~0.. ~ x r. will be 
simply denoted by ~ .  

Some more  notat ions are now needed. We introduce on Z d the lexico- 
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graphic total order, and denote by -( the corresponding order relation. 
Consider the set 

F -  = {(t, i )ERxZa :  t~< l, i~(0or t~<0,  i ~ Z  a} 

and let ~- - = ~r--  For Q e Jgs(12) we let Q~, denote the regular conditional 
probability distribution (r.c.p.d.) of Q with respect to ~ -. In the following 
definition dQ,o/dPo.~,ol~l denotes the Radon-Nikodym derivative of the 
indicated measures restricted to the a-field ~ .  

D e f i n i t i o n  2.3. Let Q~J/g~(O). The relative entropy of Q with 
respect to the Markov family {Po.r ~ { -  1, 1} z~} is defined by 

H ( Q ) = E  ~ {log ( dQ,o 
\ " P o ,  (3) 

where H ( Q ) =  + ~  if the Radon-Nikodym derivative in (3) is not defined 
or its logarithm is not in L~(Q). 

In what follows, for co e 12, i e Z d, t ~ R, we let 

N,( i )= ~ Io9,-(i)-o9,(i)1 
0<s~<, 2 + Jl,,oo(i) 

Notice that og,(i)= ( -  1 )N,(i). NOW suppose we fix o9'~ 12. For an arbitrary 
co ~/2 we define 

Sog,(i) if i~ V. 
ogn, c~ ( i ) 

" ' [co,(/) otherwise 

In what follows we briefly write c~ in place of c(og~"~ The missing 
index n will be clear from the context. We then consider the following 
expression: 

Z.,,o,(og) = exp [1 o~, . - c  (0iog,)] d t +  logc'~ 
i 

By the Girsanov formula for point processes (9~ it follows that, for every co', 

= 1 

and the process whose law on D([0, n ], { - 1 ,  1 } v.) is pc defined by n,o)' 

dP~.. o~./dPo.,o~ = Z..,o, 

is a spin process (on the finite lattice V.) with flip rates c~ i e Z  a. 
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Notice that we can repeat the same argument when co' is not fixed, but is 
a function of co. In other words, denoting by ~ ,  the set of all measurable 
functions 

D([O, n], { - 1 ,  l} V")--* D([O,n], { - 1 ,  1}~) 

for co'E ~ .  we can define pc by n , to '  

de~,,,,, (co) = Z,, ,,,'t,o)(co) 
dPo,,o ~ 

The main result of ref. 4 is the following large-deviation principle. 

T h e o r e m  1. Let A be a Borel measurable subset of ~ ( I2 ) ,  and 
denote by A and ,4 its interior and its closure, respectively. Then 

1 
- inf H~(Q)~<liminf--==. inf logP~.o~,{R..~,eA} 

Q ~ A  n ~ o o  ? l a + l  t o ' ~ n  " 

1 
~<liminf d+l inf alogP~o,r 

n ~ o o  /'/ ~ { - - 1 . 1 }  z 

1 
sup IogP~.r ~< lim._o~sup ~ e~ l _ 1.~ }z" 

1 
~< lim sup ~ sup log P~ ~,, { R,.,o ~ A } 

n ~ o ~  n tO, E ~Wn ' 

- inf_ He(Q) 
Q~A 

where 

H C ( Q ) = H ( Q ) - E  Q 1 - c(co0)- logc(co,-)dN,(O) 

In a large-deviation principle it is particularly relevant to determine 
the zeros of the rate function He(.). The following is the main result con- 
tained in ref. 5. We need to use the a-field ~-P = a{co,(i): t ~< 0} and, for a 
given QE .Ar we let Q~ denote its r.c.p.d, with respect to ~-P. 

T h e o r e m  2. For every Q e.Al~(t2) we have He(Q)>.0 and 
_ pc Q-a.s. In other words He(Q)=  0 if and H e ( Q ) = 0  if and only i f Q ~ -  0.o~0, 

only if Q is a stationary Markovian measure generated by L c. 
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The following proposition, also proved in ref. 5, establishes some 
properties of the rate function He( - ) that will be used later in this paper. 

Theorem 3. The rate function He: ~t's(~)--* R + is lower semicon- 
tinuous and has compact level sets, i.e., for every l/> 0 the set { Q e ~'Ag2): 
H~(Q) ~< l} is compact in the weak topology. 

We conclude this section by stating a technical result, proved in ref. 5, 
that will be very useful later. 

Lemma 2.4. For every n ~N  the following inequalities hold: 

dP~o,,~o 
inf{Z.,o~,(o~): m' e ~.} ~< dPo.o~o i ~ 

~< sup{ Z..o,.(o~): m' e #,,} 

3. CR IT ICAL  LARGE D E V I A T I O N S  

By the results in Section 2 we know that the sequence of random 
measures {R,,~},~ N approaches with probability l, as n ~  0% the set 
L 0 = { Q e J/s(/2): He(Q) = 0}. If the system is ergodic, then, by Theorem 2, 
Lo has a unique element Q*, and R,,o, converges weakly to Q* with proba- 
bility 1. In the nonergodic case Lo has more than one element, so that 
{ R,,o~} may have more than one limit point. A more detailed knowledge of 
the behavior of R,.~o for large n is needed in this case. In particular we want 
to show that the probability that R .... is close to any element of L o does 
not decrease too fast in n. This is the most crucial fact in our ergodicity 
test. The leading idea in our argument is rather standard (e.g., ref. 7), but 
we could not avoid a number of nontrivial technicalities. 

Let ~J. be the a-field a{o~,(i): iS//"., t ~ [ 0 ,  n]},  and denote by P~..o,, 
the r.c.p.d, of P~,o4 with respect to aj. restricted to ~r,  which is a 
measurable function of a~'e D([0, n], { - 1 ,  1 } w.) taking value in the space 
of probability measures on ~. .  Moreover, we denote by r an integer such 
that c(a) depends only on (a(i): i e  Vr). 

Le rnma  3.1 For 2 > 0  let P~ be the (noninteracting) spin system 
�9 0 , t D  0 

with all flip rates equal to 2. Then 

(m)--ZS.~(c~ ;~v~,v,... [2-c~~176 

+I~l~176 

where Z~,. ~ is a normalization factor. 
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Proof. Let R be the probability measure on ~2 defined by 

dP~)'~'~ = exp i~v~+v. { ~,'[2-c~ 

+ Jo log 2 dN,(i) 

By the Girsanov Theorem, R is a spin-flip system with flip rates 

{2 if i ~ V , + V  r 
~(i, a) = c(Oia) otherwise 

Notice that R = P~.~o~ in ~ and that, under R, o~ and fin are stochastically 
independent. The conclusion now easily follows. | 

In what follows m and M denote min~ c(a) and max~ c(a), respec- 
tively, and, for A c Z d, 

O(A)= {ieA: i+ Vr r A} 

Moreover, we let v,(A, o)) be the number of jumps from time t = 0  to t = n  
of the components in A of the path o~. 

Lemma 3.2. Let A,e~,,,, C~=4drM, and C2=log(M/m). Then, 
for every o) 'e Q we have 

P~.~o,(A.) ~< P~..~o,(A.) exp[ C, nd + C2v.(O( V. + Vr) , (.o')] 

Proof. By Lemma 3.1, for every 2 > 0 we have 

dP~..~, dP~.o~ ~ dP~.,o / 

iea(v.+ r~) 

+ log 2 

Now we let 2 = M and we estimate Z..~: 
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ioxp(,.v ,v 

<~[exp(4drMna)]Ee~nJol'~exp(,~v~{ff [)--c'~ 

where the last equality follows from the Girsanov Theorem. Thus 

dP~,,,,, <~ exp(4drMnd) exp [ ( l o g M )  v,,(O( V, + Vr), co')] 
dP~..~, 

and the conclusion follows. II 

The next is a technical lemma that will be used several times later. 

L e m m a  3.3. Let f~,f2 ..... fk be increasing functions N ~  R, and 
Az, A2 ..... Ak be finite subsets of Z d. Moreover, for i =  1, 2, let or(a) be 
positive local functions such that c~(a) ~< c2(r/) for every or, q. Then 

Proof. We just sketch the proof, since it comes from very standard 
arguments. The main idea is to construct the basic coupling of the two spin 
systems, i.e., a probability measure on f2 x I2 whose marginals are P~t.r and 
P~o2r The basic coupling is described in ref. 8, Chapter 2. The measure on 
12 x 12 so constructed gives probability one to the pairs (co, co') having the 
following property: for every t e R  and i eZ  d, if co,(i)=co',(i), then the 
probability that, after time t, co(i) flips before co'(i) is zero. Taking into 
account that co o ---~ = co~, it follows that, in the time interval [0, 1 ], co(i) 
makes less flips that co'(i) for any i~ Z d. The statement of the lemma easily 
follows. II 

L e m m a  3.4. Let Q e J[s(O), and let A be an open neighborhood of 
Q. Then there exists another open neighborhood B of Q such that, for 
every co', 09" ~ 8 ,  and for n large enough, 

P~.~, {R,,.,oeA} >>. [P~.,o.{R,,.,,,eB} ]2 e-C3,~ 



Detecting Nonergodicity in Continuous-Time Spin Systems 

where 

C3=2drM 2 + ~ -  5- + M + l O g l _ e _ 2 , , ,  

Proof. We first consider the case CO; = COg. We have 

{ [So dP~'~ (co) = exp ~ (c~'-c~")dt+ log-~-jdNt(i ) 
dP~,o," i~ o(v.) 

<-.exp(2drMna)exp[logMv.(O(V.),CO)] 

Thus, using the Schwartz inequality and Lemma 3.3, 

pc..~,. {R.,,oEA} <~ [exp(2drMnd)] 

x E~ '"  {X,R .. . .  A}exp[logMv.(O(V.),CO)]} 

<~ [ exp(2drMna) ] [P~.,o, {R..,o E A} ] ~/2 

--v.(O(V.)co)J~)m2 

1257 

/ M 2 
~< [ exp( 2drMnd) ][ P~. ,~, {R. ,o~ A} ] la exp ~M dr 

= [ P.~,,o' { R..,o cA} ],/2 exp(Dt rid) 

Dt = drM(2 + M2/m2). Now we consider CO', CO" to be arbitrary 

= f p c  - c .,o,.o~,..,{R ~ 3}  P..~,.~,(a,7) 

Now let 

pc 
~(,7,) = . .o , .o~ . . . , {R. .~2}  

with 
elements of ~ , .  In particular we let ~ ' -  ' ~ . . . .  - COo, = COo. To emphasize the 
dependence on the initial condition, for the rest of the proof we write 
P~,,o'.c rather than just P,~.,o,. We define R.,o, ~ J / . (~)  by 

-Rn,,o = R n -  t,o~,o~o 

It is clear that there is an open set .~ c J[.(12) containing Q such that if 
/~.,,o e ~, then R.,,o e A. We have 
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For 2 > 0, it is easy to show that 

i n f P ~ o c { q , = a o n V . } =  1 2 .~ 
a 

Therefore 

pc {R~ 
n ,  co ' .~ '  

>>'f q~(q"exp{i~v.[f~ 

>/[ exp( - Mn d) ] 1 - exp( - 2m). 
2 

= [exp( -D2nU)]  ~(~") 

with 

Dai Pra 

, ]} (m-c'~ log~dN,(i) Pomr 

~(~,,) 

2 
D2=  M + l ~  1 - e  -2"  

On the other hand, by what we have seen in the first part of the proof 

>_.e-2~ .. . .  ~ s } ]  ~ 

for n large, and for B a suitable open set containing Q. | 

The following result gives a lower bound for the large deviations in 
special subsets of Lo. 

T h e o r e m  4. Let A r ~/s(t2) be an open set such that there exists 
Q ~ L o c~ A with Q ergodic. Then 

inf P~o,c{R..,o~A} >1 inf W.,o,{R,,,o~A } >~e -c'"~ 
~ { - - 1 , 1 }  z d  m ' E ~ .  " ' 

for n large enough and C4 = C3 + 1. 

Proof. The first inequality comes from Lemma 2.4. Let o9'~ ~ , .  By 
Lemma 3.4 there is B open, Q E B, such that 

P~,.,o.{R,.~.~A} >~e-C3"~[ sup W..~,,{R..,o~B}] 2 

>~e-C'"a[EQ{P~o.~{R.,o~ B}} ]z 

=e-C3"~[ a{ R.,o~ B } ]2>>.e-C,." 
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for n large enough, where we have used again L e m m a  2.4, the fact that Q 
is ergodic, and that, by Theorem 2, Q~ = P~.~.  II 

Corollary 3.5.  Let A be as in T h e o r e m 4 .  Then for every o ~ ' ~  
and n sufficiently large 

P~,.~o, { R .... c A }  >~e-C"~e -c2~"<~v"+ v'~''~ (4) 

Proof. It follows from Theorem 4 and Lemma  3.2. II 

R e m a r k  3.6.  The constants  C, C2 that make  (4) true are of  course 
not optimal,  i.e., one could find smaller values for them keeping (4) true. 
All we wanted to show is that  one can determine constants  that  are simple 
explicit functions of  M, m, d, r. The estimate (4) is the key fact in the 
ergodicity test we develop in the next section. 

4. THE ERGODICITY TEST 

In this section we develop a test to determine whether  the spin system 
with generator  L c has a unique translat ion-invariant  s tat ionary measure. 
By Theorem 2 this is equivalent to determining whether Lo has a unique 
element. 

The method shown here consists in comput ing  moving averages of a 
single realization. For  l ~< n we consider the set of  empirical measures 

A,.t(og) = {Rt. o .... : (r, i)~ 7, x 7,a, (r, i) + ( [ 0 ,  1] • Vt) ~ [0, n]  x V,,} 

Notice that  A,,.1(o9)c J/AI2). We want  to show that, if 1= I(n) depends on 
n in a suitable way, then the convex hull of  A,,.~,,)(w), denoted by 
ff(A,,,/~,l(co)), approaches  Lo. To  be more  precise, let d(. ,  .) be the 
Prohorov  metric on Jgs(12) and, for A, B c ~r162 let 

d(A, B)=max{sup d(P, B), sup d(Q, A)} 
Pe~A Q E B  

where d(P,B)=infQEsd(P, Q). We want  to find conditions on l(n) for 
which, for any 6 > 0, 

sup P~.r d(Cg(A,,.l(m(og)), Lo) > 6} = f (n ,  6) 

goes to zero as n ~ ~ ,  and we also determine an asymptot ic  upper  bound 
for f (n ,  6). The p roof  is divided into two proposit ions.  



1260 

Proposition 4.1. Let l(n) be such that  

log n 
~ to+ - 0 

Then for every 6 > 0 there exists k(6)> 0 such that  

and 

P~o,r max d(R, Lo) > 6 } <~exp[--k(6) la+l(n)] 
R ~ zln,l(nl(r 

Proof. Define 

A.,a= {o9: max d(R, L o ) > 6 }  
R E zJn,/in)(tO) 

2k(6) = inf{ H~(Q): d(Q, Lo) > 6} 

Dai Pra 

for l sufficiently large. Therefore, for n large enough we have 

P~o.~(A,,.a) <<. ~ P~o.r d(Rt,.),o ..... Lo) > 6} 
r , i  

=exp { - , " ' ( . >  , . , ( . ) j j  

~< exp[ - k ( 6 )  l a+ l (n)]  

where the sum in the first line is over the pairs (r, i) ~ Z x Z a for which 
(r, i) + ( [ 0 , / ( n ) ]  x Vt~.)) = [0, n] x V.. I 

R e m a r k  4.2.  The meaning of Proposi t ion 4.1 is that  for the empiri- 
cal measures in zl.,t~.) not to fall outside Lo, l(n) must  be sufficiently 
large, namely larger than ~logl/~a+~)n. If l(n) is too small, then one is 

Since H c is 1.s.c. and has compact  level sets, we have k ( 6 ) > 0 .  By the 
uniform upper  bound for the large deviations (Theorem 1 ) there exists a 
sequence ct~ such that  a t ~ 0 as 1---, ~ and 

P~o,r o . . . .  Lo) > 6} ~< exp{ - 1  d+ ' [ 2k(6) - s t ] }  

~< exp[ - ~k(6) I a+ ' ] 
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likely to observe "deviations" outside L o. Indeed, the same argument 
of Proposition4.1 (see ref. 3, Theorem3.1) allows one to show that if 
lira inf,(log n)/l d+ ~(n) >1 t >t O, then 

limoo PD ,{ max d(R, Lt) > 6} = 0 
" R~zln, l(n) 

for every 6 > 0, where L, = { Q: He(Q) <~ t}. 

Proposition 4.3. Let l(n) be such that 

log(na+l) _ 
liminf la(n ) ~ D + 

for some e > 0 ,  and for D = C+4rdM(1 -e-C:) ,  where r, M, C, C2 are the 
constants introduced in Section 3. Then for every 6 > 0 and n sufficiently 
large we have 

P;.e{ ~o: maxe~L0 d(Q, ~f(A..,~.)(co))) > 3} <exp la+,(nij  

Proof. First we observe that, being compact, Lo can be covered by 
a finite number of balls of radius 6/2. It is therefore enough to show that 

P~o.~ d(Q,C~(A,,t(,)))>~ <exp  la+l(n)] 

for every Q e Lo. Now let us denote by L~ the set of ergodic measures in 
Lo; by the Ergodic Decomposition Theorem Lo is the convex hull of L~. 
Thus, using the fact that for P, P', Q, Q' e Jcs(t2) and 0~<0c~< 1 

d(ctP + (1 -~t)  P', ctQ + (1 - ~ )  Q') ~< max[d(P, Q), d(P', Q')] 

all we have to show is that, for every Q in L~, 

e rid(n) ] 

Now let Oa be the sublattice of Z d+ t of those points whose coordinates are 
multiples of l(n), and 

(7. = {(r, i) ~ Oa: (r, i) + [0, l(n)] • VI,.)~ [0, n] • V.} 
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Clearly 

{co: d(Q, A.j,,,)) > 6/2} c ('] {co: d(Q, R,.,).o,,,,o) > 6/2} 
( r , i )~C .  

Let W.a be the square i +  Vl(,, ), and 

W'.,i= {js  W.,,: / + Vr = W,,.i} 

Notice that { W',,,/iel(n)Z a} are disjoint squares separated by corridors 
of size 2r. We also denote by R't.,).o .... the empirical measure referred to the 
"rectangle" [r, r + l ( n ) ]  x W'... with the usual periodic boundary condi- 
tions. For n large and for every Q we have 

{d(Q, Rt(,,).o .... ) > 6/2} = {d(Q, R;(.),o,.:,,) > 6/3} 
= {d(Q, R,,.).o,,,,,,) > 6/4} (5) 

Thus 

P;.r d(Q, d..,,,,,) > 6/2) 

~>P;.r ~ {d(Q,R,(,,)o,,~,)>6/3}] 
( r  i )~Cn 

(r  ~)~C. 

= EPo.~  (1-e~,.,.o~:{d(Q, Rt(.,.o~,)<~6/4}) =(A)  
( r  i )~Cn 

where we have used Lemma 3.1 and (5). By Corollary 3.5 

(A)<~Ee;'~ I 1-~ (1-e-Cl~(")e-C2v'c"'(~176176 
(r t)ECn 

(6) 

Now let C,.o be the subset of C, made of those pairs (r, i) such that r =0.  
By the Markov property and Lemma 3.3 

(0,i) ~ Cn.o 

~< Isup EP~~ I 1-I (l-e-C'~")e-C2vtc"'(~176176 Ic"l/Ic'~ 
( O 0 ~ C  o ," n, 
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On the other hand, 

E o.~ ( 1 - e - cl'~,, )e - c2,.,,,~lo(v,c,) + v,j. o0.,ol ) 

(0 ,)eC o ," n. 

pM e - -  Cld( n )e c2 .,1(.,( a( v,(. ) + v r ). 00, ' ( t )  ) ) = I - [  E o . ~ ( I _  
(O,i)~ C..o 

= I-I [1 - e - C ' " ( " ) E ~ * ( e  c2''"'~~ v.,.o0,,o.I)] 
(0, i )  e C..o 

= [1 - e - ~  Ic".~ 

~<exp[-e  - ~ IC..ol] 

Thus 

P[~.r d(Q, A..,,,,)) > 6/2} 

~< exp[ -- I C.I e -  o/'l.)] 

~< exp { l l d+7 (n) exp[log n d+ ' -- Did(n)  ] } 

edd(n) 7 
exp [ I 

Propositions 4.1 and 4.3 yield the main result of this paper. 

T h e o r e m  5. Let l(n) be such that 

(d+  1)logn 
lira - D + e 

. . . .  I'(n) 

for some e > 0. Then, for n large enough, 

sup Pg.r a~: d(W(zt,,.tt,)(a~)), Lo) > 6} ~< 2e-k(~w~§ 4,1 
Ce{-1,1} za 

where k(3) is the constant introduced in ProposiUon 4.1. 

P r o o f .  

so that  

Remark  4.4. 
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(7) 

Just observe that, for every e > 0, one can take n large enough 

exp[  l a + i - ~ n ) j < e x p [ - k ( & ) l d + l ( n ) ]  | (8) 

In Theorem 5 the condition on l(n) is explicit, since 
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the constant D is actually computable. The constant k(6), however, is not 
computable in practice, although we know it is strictly positive. 

R e m a r k  4.5. When the system is reversible with respect to a Gibbs 
measure, one may ask how much information is gained using the whole 
path rather than sampling at a fixed large time t and using Comets' argu- 
ment. The answer to this question would consist in analyzing the constant 
k(6) appearing in Theorem 5 and comparing it with the corresponding 
constant in Comets' paper. Such an analysis requires a detailed knowledge 
of the rate functions, which may be available only in some special model. 

R e m a r k  4.6. A suitable version of Theorem 5 indeed holds even if 
we replace r by A,.t(,o itself. The reason why we have considered 
the convex hull of A,,a,, ~ is that we have proved the lower bound in 
Theorem 4 only for open sets A containing ergodic measures in Lo. 
Actually, it is possible to prove Theorem 4 for every open set A having 
nonempty intersection with L0, and the price to pay is that the constant C 
depends on A. 

We have chosen not to give such proofs for three reasons�9 The first is 
that, although the argument to extend Theorem 4 is standard (see e.g., 
ref. 6), the details in our model are rather technical. Second, in condition 
(7), the constant D would be an unknown function of 6, so the condition 
on l(n) is no longer explicit. This could be fixed by choosing l(n) such that 

�9 l o g  n 
hm U--~=  + ~  

�9 l o g  n 
1,m i,~+ ' (n)  = 0 

but in this way we would get a worse rate of convergence in Theorem 5. 
Finally, if we know that d,,t~,~ spreads out in a set of diameter > r  (or, 
conversely, concentrates in a set of diameter <r) ,  then the same is true 
for its convex hull. The information on ergodicity we wanted to detect is 
therefore contained in A,.;(,). 

In particular the following result is an easy consequence of Theorems 
5 and 2. 

Coro l la ry  4.7. Let f :  { - 1 ,  1} z ~  R be a continuous function, and 
l(n) be as in Theorem 5. Define 

I~(o~) = [ a . ( w ) ,  b . (co)]  
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where 

and 

with 

a.(oJ) = inf{ ER(f(o~)):  R ~ d..t(.)(w) } 

b.(co) = sup{ ER(f(co~)): R E d..t(.l(oJ)} 

/ I =  [a, b] 

a = inf{ EJ'(f): g is an invariant measure for L c} 

b = sup{ E~'(f): p is an invariant measure for L c} 

Then, for every fi > 0 there is k > O, depending on 6 and f,  such that 

sup P~.<{co: dist(I~(o~), I f) > 6} ~< e-kl~+'("' 

where dist(.,  .) denotes the usual distance between subsets of R. 
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